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Abstract— Humanoid robots are intended to interact with
unstructured environments and to perform diverse applications.
Often, such work involves manipulating an object coopera-
tively with multiple hands or fingers. This work presents an
impedance based control framework for such cases with multi-
priority tasking. The primary task governs the impedance
response of the object and a secondary task governs the
impedance response of the joints. Using a novel transformation,
the primary task may specify a subset of the object degrees
of freedom (DOFs), allocating the remaining DOFs to the
secondary task. This results in an integrated null space that
includes not only the redundant DOFs of each manipulator
independantly, but also the free DOFs of the object shared
across the manipulators.

I. INTRODUCTION

The deployment of humanoid robots to manufacturing

sites, especially assembly line work, requires robots to work

in unstructured environments in which they physically inter-

act with tools, surfaces, and disturbances while performing

diverse tasks. Impedance control offers inherent advantages

for such manipulation applications. First presented in [1],

impedance control provides for robust interaction with the

environment along with the flexibility to implement either

force or motion objectives. These same advantages that arise

in single-arm manipulation also apply to the cooperative

control of an object using multiple manipulators.

This article presents an object impedance controller with

two key features. First, it implements a multiple task hier-

archy in which a second impedance relation operates in the

redundant space of the first. The primary task applies to the

operational space, while the secondary task applies to the

joint space. The idea of prioritized multi-tasking is common

in the area of motion control for manipulators [2]; however,

its application to impedance control is new. This concept of

multi-priority impedance was first presented in [3], where it

was applied to serial-chain manipulation. This work extends

the concept to cooperative control, where multiple serial-

chain manipulators close the loop on a single object.

Second, the primary task is defined on the object level

to model a closed-chain mechanism. The primary task may

thus specify impedances for only select degrees of freedom

(DOFs) for the object, allocating the other DOFs to the

secondary task. Hence, the null space of the primary task ex-

tends beyond the tip of the individual manipulator to include
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the free DOFs of the object, a space now integrated across the

manipulators. This paradigm facilitates both the primary and

secondary tasks. For example, when the object’s position is

controlled but its orientation is free, the positional workspace

is larger than it would be if orientation was also constrained.

Moreover, the utilization of the extra freedoms can notably

improve the fidelity of the secondary task, better enabling

such features as joint-limit avoidance, obstacle avoidance,

and null space damping. This closed-chain transformation

presented here is applicable to other existing cooperative

control frameworks as well.

Others have presented impedance laws for cooperative

manipulation, but none with the key features presented

here. In some cases, the laws govern the impedance of the

manipulator end-effectors rather than the true impedance of

the object [4], [5]. In other cases, the true object impedance

is governed [6]; however, a dynamic model of the object and

estimates of the acceleration are required—information that

is inevitably noisy and inaccurate. This need for the object

dynamics is eliminated in [7] by defining the impedance

law with respect to a measure of internal force, but the

external interaction of the object is no longer governed by a

true impedance relation. Furthermore, [8] combines the two

laws of [6] and [7] to control both the external and internal

impedance of the object, but the law applies to non-redundant

manipulators.

The formulation presented here applies a true object

impedance. It eliminates the need for the object dynamics

by introducing force feedback on the end-effectors. Such

sensing is often accessible with higher fidelity than attempts

to model the object and estimate its acceleration.

The controller is validated in simulation. A fully-dynamic

model of a humanoid robot is created with two 7-DOF arms.

The simulation demonstrates the performance of the multi-

priority impedance and closed-chain task definition.

II. IMPEDANCE LAWS

Our controller implements two impedance relations in a

hierarchical framework. The primary impedance law dictates

the behavior of the object and is defined by the following

relation.

Moÿ + Boẏ + Ko∆y = F − F ∗ (1)

ẏ
.
=

( v
ω

)

In this expression, Mo, Bo, and Ko are the commanded

inertia, damping, and stiffness matrices respectively, where

all are symmetric, 6 × 6 matrices. v is the linear velocity

of the reference point on the object while ω is the angular



velocity of the object; both are measured with respect to the

ground reference frame. F and F ∗ represent the net actual

and desired external wrench, respectively, acting on the

object. ∆y is the position error, where the linear component

is expressed by (y − y∗) and the angular component is

expressed in an angle-axis representation [9]. Note that the

angular component is thus not a true integral of ω despite

the notation. Throughout this paper, bold symbols refer to

either spatial vectors or column matrices.

At equilibrium, the external force F should be the sum of

the nominal force F ∗ and the spring force Ko∆y. If it is

desired for some directions to be pure force control, this may

be accomplished by setting the stiffness of those directions

to zero in Ko. Given positive-definite matrices for Mo, Bo,

and Ko, the impedance relation specifies a stable response.

The redundancy of the manipulators allows for a secondary

task to act in the null space of the object impedance. We

specify a joint space impedance law as:

Mjq̈ + Bj q̇ + Kj∆q = τ f , (2)

where Mj , Bj , and Kj are the commanded inertia, damping,

and stiffness matrices, respectively, q is the column matrix

of joint angles for all manipulators in the system, ∆q is the

joint position error, and τ f represents the column matrix of

joint torques produced by forces acting on the manipulator.

III. KINEMATIC TRANSFORMATIONS

To implement the object impedance task in (1), a kinematic

transformation is needed to map the accelerations from the

object space down to the joint space. The null space of

this transformation is available for performing the secondary

task. In the literature, such a transformation has been formu-

lated by combining open-chain Jacobian matrices for each

manipulator with a grasp matrix relating the velocity of

each end-effector to the velocity of the object (both linear

and angular). This tacitly assumes that all object degrees

of freedom are specified in the primary task. To free up

some object DOFs, we adopt a closed-chain perspective that

collectively modifies the grasp and Jacobian transformations.

We first review the open-chain transformations and then we

combine them to form the closed-chain transformation for a

reduced set of object DOFs.

A. Open-Chain Kinematics

The free-body diagram of the object and the coordinate

system are shown in Fig. 1, where N and B represent the

ground and body reference frames, respectively. Suppose that

there are n points of contact between the robot and the

manipulated object. For i = 1, . . . , n, let ri be the position

vector from the reference point to the ith contact point and

let vi and ωi be the velocity and angular velocity of an

end-effector frame whose origin coincides with that point.

The acceleration of the body B and the acceleration of the

ith contact frame of reference are related as:

v̇i = v̇ + ω̇ × ri + ω × (ω × ri) + 2ω × vreli + areli

ω̇i = ω̇ + αreli . (3)

Fig. 1. Free-body diagram of object B, showing a force, fi, and a torque,
ti, at contact point i. O and G represent the reference point and center of
mass, respectively.

Here, vreli and areli are the first and second derivatives,

respectively, of ri in the object frame B. ωreli is the relative

angular velocity between B and the ith end-effector frame,

and αreli is its time derivative in the ground frame. If the

end-effectors are rigidly attached to B and if the object

is completely rigid, then all of the relative velocities and

accelerations, i.e., vreli , areli , ωreli , and αreli , must be

zero. In reality, the object and the end-effectors will have

some compliance and relative motion between them that may

be used to induce a desired change in internal forces, as we

shall explore in a later section.

The acceleration relations (3) can be expressed in matrix

form as the familiar grasp mapping. Let ẋ be a column

matrix of all the velocities vi and/or ωi that are constrained

by the nature of the contact between the robot and the object,

and let ÿ be as in (1). Then,

ẍ = Gÿ + h (4)

where G is known as the grasp matrix, and h is a column

matrix of the relevant centripetal, Coriolis, and relative

accelerations. The forms of G and h depend on the grasp

type, as we will see shortly.

While (4) summarizes the dependence of the contact frame

accelerations, ẍ, on the object motion, ÿ, we may also use

the forward kinematics of each branch of the manipulator to

express ẍ in terms of the joint velocities and accelerations,

hence:

ẍ = J q̈ + J̇ q̇ = Gÿ + h, (5)

where J is the column-wise concatenation of Jacobian ma-

trices for the relevant velocities and/or angular velocities of

the contact frames.

B. Grasp Types

In this transformation, the structures of J , G, and h

depend on the grasp type. To illustrate, we will consider

the following two grasp types.

• Two-Hand Grasp: A hand grasp represents a rigid con-

tact that can transfer both arbitrary forces and moments,

thus constraining both the linear and angular motion of

the end-effector. Accordingly, for a two-hand grasp, ẋ

is a column matrix stacking the vectors v1, ω1, v2, ω2.



• Three-Finger Grasp: If we model a finger contact as a

no-slip, point contact, then it transmits only force and

constrains just position. Accordingly, for a three-finger

grasp, ẋ is a column matrix stacking just the linear

velocities v1, v2, v3.

Referring to (3), the form of each row in G corresponds to

the entry type in ẋ. For each linear velocity entry, vi, G has

a row of the form
[

I3 − r×

i

]

, where Ik is the k×k identity

matrix and r×

i is the skew-symmetric matrix for the cross-

product of ri. For each angular velocity entry, ωi, there is a

row of the form [0 I3]. Similarly, the rows in h compatibly

capture the remaining acceleration terms in (3).

C. Closed-Chain Kinematics

As discussed earlier, it can be advantageous to specify only

a subset of the object DOFs in the primary task, allowing the

remaining DOFs to be allocated to the secondary task. Let ż

represent the p DOFs of the object selected, given in terms

of a p × 6 selection matrix S as ż = Sẏ. If S is constant,

then z̈ = Sÿ and

ÿ = S+z̈ + S⊥µ, (6)

where S+ is the pseudoinverse of S, S⊥ is a 6×(6−p) matrix

spanning the null space of S, and µ ∈ R
6−p is arbitrary. µ

parameterizes the extra DOFs available to the secondary task.

To describe just the constraints that the primary task places

on the secondary one, we eliminate µ as follows. Start by

substituting (6) into (5).

J q̈ + J̇ q̇ = G
(

S+z̈ + S⊥µ
)

+ h (7)

To eliminate µ, we need to find a full-rank matrix E such

that:

EGS⊥ = 0, (8)

where E ∈ R
(6n+p−6)×6n. Multiplying (7) by E gives the

reduced set of equations.

EJ q̈ + EJ̇ q̇ = EGS+z̈ + Eh

= EGS+Sÿ + Eh (9)

Note that E is not unique: any full-rank annihilator of GS⊥

will suffice. In general, E may be found by standard linear

algebra operations on GS⊥, but we may advantageously pre-

compute it for the most common combinations of task type

and grasp type. We take up this exercise in the following

section.

We see that the matrix EJ plays a similar role in the

closed-chain kinematics as the Jacobian matrix usually plays

in the open-chain kinematics. Drawing on this analogy, we

define the following matrices:

Ĵ
.
= EJ,

ˆ̇
J

.
= EJ̇, Ĝ

.
= EGS+S, ĥ

.
= Eh. (10)

This allows us to define our final closed-chain transformation

in the following compact form.

Ĵ q̈ + ˆ̇
J q̇ = Ĝÿ + ĥ. (11)

This transformation is not limited to the impedance con-

troller presented here: it is also applicable to other existing

cooperative or coordinated controllers. This will allow the

other controllers to also free up DOFs from the object

space for a secondary task. For first-order controllers, the

transformation becomes Ĵ q̇ = Ĝẏ, where zero relative

velocities are assumed.

IV. EXPLICIT SOLUTIONS

As described in the previous section, the closed-chain

transformation can either be computed online or derived of-

fline. It turns out that the transformation takes on surprisingly

simple expressions for some common grasp and task types,

expressions that require essentially no extra computation

compared to the open-chain formulations. Given the two

grasp types described, we will consider the following three

task types.

1) Full pose control: S = I6, S+ = I6, S⊥ = ∅.

2) Orientation-only control:

S = [0 I3] , S+ =
[

0
I3

]

, S⊥ =
[

I3
0

]

.

3) Position-only control:

S = [I3 0] , S+ =
[

I3
0

]

, S⊥ =
[

0
I3

]

.

For full pose control with any grasp type, there are no free

object DOFs, and we have simply E = I6. The remaining

four cases are as follows.

A. Two-hand, Orientation-only

E =





I3 0 −I3 0
0 I3 0 0
0 0 0 I3





B. Two-hand, Position-only

E =





I3 r×

1 0 0
0 0 I3 r×

2

0 I3 0 −I3





C. Three-finger, Orientation-only

E =

[

I3 −I3 0
I3 0 −I3

]

D. Three-finger, Position-only

This final scenario is more challenging, due to the diffi-

culty of explicitly eliminating the free variable ω̇ from the

set of motion constraints. For this scenario,

GS⊥ =





−r×

1

−r×

2

−r×

3



 .

Since the three contacts are not collinear, we may assume

that r1 × r2 6= 0 (after possibly renumbering the points).

Then, after solving for the scalars α, β, γ such that,

r3 = αr1 + βr2 + γr1 × r2. (12)

one may take E as

E =









rT
1 0 0
0 rT

2 0
rT

2 rT
1 0

αI3 − γr×

2 βI3 + γr×

1 −I3









(13)



While the derivation of E in this case is not obvious, one

may check that it annihilates GS⊥ and that it is full rank.

V. OBJECT DYNAMICS

Before turning to the control law, we still need to un-

derstand the net contribution of the contact forces on the

object. This includes both the external dynamics as well as

the internal forces acting on the object.

For the external dynamics, consider once again the free-

body diagram in Fig. 1. The equation of motion for the object

can be expressed as follows.

F ma = F + GT f + mĝ (14)

F ma
.
=

(

maG

IGω̇ + ω × IGω + rG × maG

)

ĝ
.
=

(

g

rG × g

)

Here, F ma is the inertial forces written in terms of: m, the

mass of the object; IG, the moment of inertia about the center

of mass, G; aG, the acceleration of point G; and rG, the

position vector from the reference point O to G. On the

right-hand side, f is the column matrix of contact forces, f i,

and contact torques, ti, (see Fig. 1) arranged to mirror the

list of velocities, vi, and angular velocities, ωi, that appear

in ẋ. Also, F is the net external wrench (force and moment)

about point O, and g is the gravity vector.

For the internal forces, one can see from (14) that they

are defined by the null space of GT . Our approach is to use

the relative acceleration terms to control the internal forces;

hence, they too must lie in the same space. For the sake of

this work, we will control the interaction forces between the

contacts. An interaction force, fij , is defined as the difference

between two contact forces projected along the line between

the contact points [10]. It provides a physically relevant

parameter, i.e. the squeeze force, that lies in the null space of

all grasps. Accordingly, we will use the relative accelerations

to close a servo loop about the interaction forces. Consider

the example of a two point contact, where uij is the unit

vector pointing from contact point i to j.

areli =
(

kP + kI

∫

dt
) (

f∗

ij − fij

)

uij (15)

fij
.
= (f i − f j) · uij

kP and kI are the constant gains.

VI. CONTROL LAW

Using these impedance tasks, motion transformations, and

internal forces, we can now present the control law. First, we

will start by modeling the equations of motion for the full

system of manipulators.

M q̈ + c − τ f = τ (16)

Here, M is the joint space inertia matrix, c is the column

matrix of Coriolis, centripetal and gravitational generalized

forces, τ f is the set of joint torques induced by external

forces, and τ is the column matrix of joint torques. Assuming

that forces act on the manipulator only at its contact points

with the object,

τ f = −JT f . (17)

A. Estimation

In preparation for the control law, some unsensed quan-

tities for the object need to be estimated. First, the external

wrench, F , needs to be estimated from the other forces on

the object. Referring to (14), we ignore the inertial forces of

the object to obtain the quasi-static estimate

F = −GT f − mĝ. (18)

Although included here, the object weight can also be

neglected in most cases. In addition, the object velocity can

be estimated with the following least-squares error estimate

of the system as a rigid body:

ẏ = G+J q̇, (19)

where the superscript (+) indicates the pseudoinverse of the

respective matrix.

B. Inverse Dynamics Controller

An Inverse Dynamics Controller [9] simply substitutes a

commanded joint acceleration, q̈∗, for q̈ in (16):

τ = M q̈∗ + c − τ f . (20)

The commanded joint acceleration is expressed in terms of

the commanded object acceleration, ÿ∗, according to (11) as

q̈
∗ = Ĵ+

(

Ĝÿ
∗ + ĥ − ˆ̇

J q̇
)

+ N
Ĵ
q̈
∗

ns (21)

N
Ĵ

.
= I − Ĵ+Ĵ

where q̈∗

ns is an arbitrary vector of accelerations, which is

projected orthogonally into the null space of Ĵ via N
Ĵ

. The

two commanded accelerations, ÿ∗ and q̈∗

ns, are found from

the impedance specifications in (1) and (2):

ÿ∗ .
= M−1

o (F − F ∗ − Boẏ − Ko∆y) ,

q̈∗

ns

.
= M−1

j (τ f − Bj q̇ − Kj∆q) . (22)

The compensation of internal forces on the object occurs as

relative acceleration commands calculated from (15) which

then plug into the evaluation of h.

To understand the true behavior of the control law, con-

sider the closed-loop analysis of the system. The following

independent closed-loop dynamics can be derived for both

the range space and null space of the system.

S
[

ÿ + M−1
o (Boẏ + Ko∆y − ∆F )

]

= SM−1
o F ma (23)

N
Ĵ

[

q̈ + M−1
j (Bj q̇ + Kj∆q − τ f )

]

= 0 (24)

The first relation reveals the desired object impedance task

in (1) applied to the DOFs selected by S. If the impedance

matrices are diagonal, the task spaces will remain decoupled.

The right-hand side of this relation represents a disturbance

from the object accelerations due to the quasi-static esti-

mation of F . Notably, this disturbance does not effect the

internal forces. The second relation shows that the desired



Fig. 2. Kinematic model of the robot. All joint angles are shown in the
zero position, and positive rotation is defined in a right-hand sense. The
origin is located at the center of the shoulder.

link length mass inertia

(m) (kg) (g m2)

shoulders 0.2 – –, –, 200
upper arms 0.4 7 100, 100, 1
lower arms 0.4 7 100, 100, 1
hands 0.1 2 8, 8, 8
object 0.4 2 8, 8, 8

TABLE I

MODEL PROPERTIES

secondary impedance task in (2) is implemented with a

minimum-error projection into the collective null space. The

free DOFs from the object are thus shared amongst the

manipulators for the secondary task.

VII. SIMULATION EXPERIMENTS

A. Model

We developed a fully dynamic simulation to test the

control law. The simulation consisted of two manipulator

arms and a spatial object. The manipulators each modeled

a humanoid arm with seven DOF and three links: an upper

arm, lower arm, and hand. The kinematics of those arms

are shown in Fig. 2. The contact constraints between the

end-effectors and the object were enforced through spring-

damper forces. Each body in the simulation had a symmetric

mass distribution, with the center of mass located at the

center of the link. The physical properties are listed in Table

I. For the six-DOF object, orientation was represented using

xyz Euler angles. The orientation error was subsequently

converted to an axis-angle representation for the sake of ∆y

in the control law [9].

B. Experiment

The experiment implemented a two-hand grasp with the

position-only task definition. The robot was asked to hold

the position of the object fixed while achieving a desired

configuration in the joint space. Since the object orientation

was left free, the experiment was expected to rotate the object

while minimizing the errors in the secondary impedance.
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Fig. 3. Object pose for the first experiment. The position remained fixed
while the object rotated to minimize the joint space errors.

The robot started out in the initial position shown in

Fig. 2—but with the lower arms pointing out horizontally

(q4 = q11 = 90◦). This placed the object at an initial orienta-

tion of (90, 0, 0) degs and an initial position of (0, 0.5,−0.4)
m. In this position, we provided a step input to the joint

space impedance commanding the right shoulder to swing

forward (q1 = 30◦). This command tended to pull the left

elbow into the torso, and so we added a second command

to keep the left elbow out (q9 = −10◦). These commands

were implemented through the stiffness of the secondary

impedance, where the only non-zero elements of Kj were

the diagonal elements corresponding to q1 and q9. Hence,

all the other joints have no position reference. The damping

was tuned for an overdamped response.

The controller demonstrated the expected results. The

commanded joints converged stably to their references with

no steady-state error. The secondary impedance rotated the

object to satisfy its commands, without perturbing the po-

sition. The object pose is displayed in Fig. 3, and the joint

angles are displayed in Fig. 4. In comparison, using full-

pose control, the joints would only have been able to reach

a steady-state value of q1 = 1◦ and q9 = −6◦.

In addition, the experiment tested the ability to regulate

internal forces. A desired interaction force of f∗
12 = 20 N was

commanded, which equals the weight of the object. Although

the robot grasp started out initally with zero interaction force,

the controller quickly converged to the reference value and

held the value steady throughout the run. Shown in Fig. 5, the

interaction force is unperturbed by the object accelerations,

although these accelerations are not fed back. The complete

list of controller parameters is available in Table II.
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Fig. 4. Joint values for the first experiment. The commanded joints (bold
lines) successfully converged to the reference values (dotted lines).
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Fig. 5. The controller successfully maintained the desired interaction force
between both hands, unperturbed by either object or joint space motions.

Throughout the experiments, the effectiveness of the task

hierarchy was demonstrated. The secondary impedance con-

sistently operated in the null space without interfering with

either the object impedance nor the object internal forces.

Other experiments showed the controller moving the object

with the desired impedance response, while controlling the

joints in an orthogonal space.

parameter value parameter value

Mo I6 Mj M

Bo

[

30I3 0

0 3I3

]

Bj 20I6

Ko

[

200I3 0

0 5I3

]

Kj11
, Kj99

600

kP 0.2 kI 0

TABLE II

CONTROLLER PARAMETERS.

VIII. DISCUSSION

The framework of a primary object impedance and sec-

ondary joint impedance offers substantial advantages for

humanoid robots performing assembly tasks. The impedance

formulation inherently lends itself to robust interaction with

the environment with flexible objectives. The presence of the

joint space impedance adds the ability to achieve such utili-

tarian objectives as obstacle avoidance, joint limit avoidance,

and null space damping. The hierarchy then allows these

joint level commands to be applied without compromising

the object behavior or grasp. This can be an important safety

feature when the object is engaged with the environment. The

combination of these features thus forms a nice framework

for cooperative assembly tasks.

A significant contribution in this work is the ability to

select a subset of the object’s degrees of freedom in the

primary task, allowing the remaining object DOFs to assist

in the attainment of a secondary task. We formulate this in

terms of a closed-chain Jacobian and grasp matrix, Ĵ and

Ĝ respectively. A compatible control law is proposed and

validated in simulations of a two-armed robot. The closed-

chain Jacobian and grasp matrices are not limited to this

control law; they can be applied to other existing cooperative

controllers, be they motion- or force-based controllers.
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